ANALYSIS OF OVERALL AND INTERNAL PERFORMANCE OF VARIABLE-GEOMETRY ONE- AND TWO-STAGE AXIAL-FLOW TURBINES

bу

E. E. Flagg

prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

April 30, 1966

CONTRACT NAS3 -7262

Technical Management NASA Lewis Research Center Cleveland, Ohio

Lewis Project Manager: E. L. Warren Lewis Research Advisor: A. J. Glassman

GENERAL ELECTRIC COMPANY Cincinnati, Ohio 45215

(BLANK)

CONTENTS

1.0	SUMMARY	Page 1
	1.1 Single Stage Turbine 1.2 Two-Stage Turbine	1 1
2.0	INTRODUCTION	2
3.0	TASK III - ANALYSES OF SELECTED GEOMETRIES	2
	3.1 Objective 3.2 Assumptions 3.3 Results 3.3.1 Single Stage Turbine 3.3.2 Two-Stage Turbine	2 3 6 6 8

ILLUSTRATIONS

Page

Figure	
1	Turbine Flowpath Elevation
2	RTF versus η R and η S @ η RR = 1.00
3.	7 KK = .95
4.	1 KK 30
5.	Efficiency versus Pressure Ratio - RTF = .95
6.	RTF = 1.0
7.	" Loss Profile
8.	" RTF Profile
9.	Method Comparison η S = .98
10.	$ \eta S = .96 $ $ \eta S = .94 $
11.	" $\tilde{\eta}_{S} = .94$
Cd ~ 1	o Staro Cabadula O O
_	e Stage - Schedule 0.0,
	Performance Map
	Equivalent Flow versus Pressure Ratio
	Rotor Incidence versus Equivalent Work
	Exit Angle Versus Equivalent Work
	Hub Mach Number
1/.	Hub Reaction
Singl	e Stage - Schedule -7.53
18.	Performance Map
19.	Equivalent Flow versus Pressure Ratio
20.	
21.	•
22.	<u> </u>
23.	
_	e Stage - Schedule 7.13
24.	Performance Map
25.	Equivalent Flow versus Pressure Ratio
26.	•
27.	Exit Angle Versus Equivalent Work
28.	Hub Mach Number
29.	Hub Reaction
Тъто = 9	Stage Schedule 0.0, 0.0
30.	Performance Map
31.	Equivalent Flow versus Pressure Ratio
32.	Rotor 1 Incidence versus Equivalent Work
33.	Stator 2 " " " "
33. 34.	Rotor 2 " " " "
34. 35.	
35. 36.	Exit Angle " " Rotor 1 Hub Mach Number " "
30. 37.	Rotor 2 " " " " "
	Rotor 2
38.	Stage I nub Reaction
39.	Stage 2 Hub Reaction "

```
Two-Stage Schedule -7.53, 0.0
40.
      Performance Map
41.
      Equivalent Flow versus Pressure Ratio
42.
      Rotor 1 Incidence versus Equivalent Work
                            11
                                     11
43.
      Stator 2
                                     "
                                              11
44.
      Rotor 2
                                     11
                                              11
45,
      Exit Angle
                                     **
                                              **
46.
      Rotor 1 Hub Mach Number
      Rotor 2 "
                    11
                                              11
47.
                                     11
48.
                                              **
      Stage 1 Hub Reaction
                                              11
49.
      Stage 2 Hub Reaction
Two-Stage Schedule 7.13, 0.0
50.
      Performance Map
51.
      Equivalent Flow versus Pressure Ratio
52.
      Rotor 1 Incidence versus Equivalent Work
53.
      Stator 2
                                     11
                                              **
54.
      Rotor 2
                                     **
                                              11
55.
      Exit Angle
                                              11
56.
      Rotor 1 Hub Mach Number
      Rotor 2 "
57.
                                     11
                                              11
58.
      Stage 1 Hub Reaction
                                              11
59.
      Stage 2 "
Two-Stage Schedule 0.0, -9.62
60,
      Performance Map
61.
      Equivalent Flow versus Pressure Ratio
62.
      Rotor 1 Incidence versus Equivalent Work
                            11
                                    11
63.
      Stator 2
                   11
                                    11
                                              11
64.
      Rotor 2
                                              11
65.
      Exit Angle
                                              11
66.
      Rotor 1 Hub Mach Number
      Rotor 2 "
67.
                   11
                                    11
                                              **
78.
      Stage 1 Hub Reaction
                                              11
69.
               11
      Stage 2
Two-Stage Schedule -7.53, -9.62
70.
      Performance Map
71.
      Equivalent Flow versus Pressure Ratio
72.
      Rotor 1 Incidence versus Equivalent Work
                            11
                                    11
73.
      Stator 2
                                              11
74.
      Rotor 2
75.
                                    11
                                              11
      Exit Angle
                                    11
                                              11
76.
      Rotor 1 Hub Mach Number
      Rotor 2 "
                   11
77.
                                    11
                                              11
78.
      Stage 1 Hub Reaction
                                              11
79.
      Stage 2 Hub Reaction
Two-Stage Schedule 7.13, -9.62
80.
      Performance Map
81.
      Equivalent Flow versus Pressure Ratio
82.
      Rotor 1 Incidence versus Equivalent Work
83.
                    11
                           **
                                    11
      Stator 2
```

11

84.

Rotor 2

11

11

11

```
Exit Angle Incidence versus Equivalent Work
85.
86.
      Rotor 1 Hub Mach Number
                    11
                                      11
                                                 11
      Rotor 2 "
87.
                                      11
                                                 11
88.
      Stage 1 Hub Reaction
89.
      Stage 2 "
Two-Stage Schedule 0.0, 8.81
90.
      Performance Map
91.
      Equivalent Flow Versus Pressure Ratio
      Rotor 1 Incidence versus Equivalent Work
92.
93.
      Stator 2
                                      11
                                              • •
                   11
                           "
94.
      Rotor 2
                   11
                           11
                                      11
                                              * *
95.
      Exit Angle
                                      11
                                              11
96.
      Rotor 1 Hub Mach Number
                                              11
97.
      Rotor 2
               11
                                              11
98.
      Stage 1 Hub Reaction
                                              11
99.
      Stage 2 "
Two-Stage Schedule -7.53, 8.81
100. Performance Map
101. Equivalent Flow versus Pressure Ratio
102.
      Rotor 1 Incidence versus Equivalent Work
103. Stator 2
                                      **
                                              11
                            11
                   11
104. Rotor 2
                                      **
                                              11
                   11
105. Exit Angle
                                      11
                                              11
106. Rotor 1 Hub Mach Number
                                              11
107. Rotor 2 "
                                      11
                                              11
108.
      Stage 1 Hub Reaction
                                              **
109.
      Stage 2 Hub Reaction
Two-Stage Schedule 7.13, 8.81
110. Performance Map
111. Equivalent Flow versus Pressure Ratio
112. Rotor 1 Incidence versus Equivalent Work
                            11
113. Btator 2
                            11
                                       11
                                              11
                   11
114. Rotor 2
                   11
                            11
                                       11
                                              11
115. Exit Angle
                                       11
                                              11
116. Rotor 1 Hub Mach Number
                                       11
                                              * *
117. Rotor 2 "
                                       ••
                                              11
118. Stage 1 Hub Reaction
119. Stage 2 Hub Reaction
```

ANALYSIS OF OVERALL AND INTERNAL PERFORMANCE OF VARIABLE-GEOMETRY ONE- AND TWO-STAGE AXIAL FLOW TURBINES

by E. E. Flagg General Electric Company

1.0 SUMMARY

The method of analyzing the off-design performance, of multi-stage axial-flow turbines, with both fixed and variable turbines developed under Task I and Task II (Reference 1) was used to study performance variation for a single stage and a two-stage turbine. The off-design loss definition parameters calculated for the NASA Lewis Research Center turbine in Task II were used in determining the performance maps. Performance maps are presented in the form of equivalent work versus equivalent weight-flow-speed parameter with contours of total pressure ratio as well as mean section incidence angle, rotor-hub Mach Number and rotor-hub reaction versus equivalent work are also presented.

- 1.1 Single Stage Turbine. The single stage turbine specified by the NASA Project Manager was evaluated by computing three performance maps: a.) stator at design point position; b.) stator at open position; c.) stator at closed position. Peak turbine efficiency was .901, .866, and .910 for the three maps respectively.
- 1.2 Two-Stage Turbine. The two-stage turbine specified by the NASA Project Manager was evaluated by computing nine performance maps with the first and second stage stators at design point position, open position and closed position. The pitchline effective areas associated with the stator positions were 130% open and 70% closed on both stators for a net area change of 186% over minimum. Representative points are evaluated in detail.

2.0 INTRODUCTION

Advanced air breathing propulsion engines will have to operate over a broad range of conditions during subsonic and supersonic flight operations. Consequently, a wide range of requirements will be imposed on the propulsion system and turbine stator area variation appears to offer very good potential to obtain the desired cycle flexibility through variation in cycle pressure ratio, air flow and/or turbine inlet temperature to approach more optimum conditions. The achievement of optimum aero-thermodynamic design of the turbine for variable stator operation will depend upon a knowledge of the change in overall and interstage turbine performance as a function of the requirement variations.

3.0 TASK III - ANALYSES OF SELECTED GEOMETRIES

3.1 Objective. - The aerodynamic design and off-design analyses of a multistage variable stator area turbine require a lengthy series of trials, rejections, and retrials relative to both the overall design and to smaller details within the design. The aero-thermodynamic design must be closely integrated with the mechanical design, cooling system design and cycle and mission analyses in order to arrive at an optimum machine. There are many variables and sub-variables interwoven in a design, so that a true optimum is difficult to achieve and is directly related to the coordination of the aero-thermodynamic design, cooling system design and cycle and systems analysis.

In order to achieve wide modulation over the range of subsonic and supersonic flight conditions, propulsion systems with variable turbine stator area appear to offer very good potential to obtain the desired cycle flexibility. The degree of performance payoff, however, depends upon the particular mission and cycle being considered, and trade-offs between supersonic and subsonic flight conditions must be made in order to arrive at an optimum turbine stator area variation. The turbine off-design performance analysis for a variable turbine stator machine, is many times more involved and time-consuming than previous turbine practice.

The specific objectives of Task III were to use the digital computer program prepared in Task II to study interstage and overall performance variation for two example cases. The two example turbines were a single stage and a two-stage turbine specified by the NASA Project Manager. There were a total of twelve sets of performance maps for specified speed and stator position settings. In performing

the computations to obtain the performance maps, the speed of the turbine was varied from 60 percent to 120 percent of design speed, and the work output varied from 0 to the maximum work condition, limited by discharge annulus choking which is beyond the first blade row choke and the last rotor choke operating point. The following performance maps were computed by the General Electric Company:

- A.) Single stage turbine (3 maps)
 - 1.) Stator at design position
 - 2.) Stator at open position
 - 3.) Stator at closed position
- B.) Two stage turbine (9 maps)
 - 1.) First and second stage stators at design position
 - 2.) First stage stator at open position with second stage stator at design position.
 - 3.) First stage stator at closed position with second stage stator at design position
 - 4.) First stage stator at design position with second stage stator at open position
 - 5.) First and second stage stators at open position
 - 6.) First stage stator at closed position with second stage stator at open position
 - 7.) First stage stator at design position with second stage stator at closed position
 - 8.) First stage stator at open position with second stage stator at closed position
 - 9.) First and second stage stators at closed position.
- 3.2 Assumptions. At the beginning of Task III, the NASA Project Manager specified the example turbines selected for analysis, i.e., a single stage and a two-stage turbine. The turbine geometrics as provided by Lewis Research Center are shown in the following table. A flowpath elevation is shown in Figure 1.

SINGLE-STAGE TURBINE FOR TASK III

Total Efficiency = 0.885

 P_{T} , in/ P_{T} , out = 1.797

 P_{T} , in/ P_{S} , out = 2.004

Design Flow = 39.90 lb/sec

 T_{T} , in = 518.7°R

N = 4407.4 rpm

 P_{T} , in = 1 atm

STG = 1

SECT = 5

RG = 53.3

PCNH = .2, .2, .2, .2, .2

STAGE 1

GAMG1 = 1.4, 1.4, 1.4, 1.4, 1.4,

DR1 = 22., 22., 22., 22., 22.,

DT1 = 30., 30., 30., 30., 30.,

RWG1 = 1., 1., 1., 1., 1.,

SDIA1 = 0.0, 0.0, 0.0, 0.0, 0.0,

SDEA1 = 69.58, 68.28, 67.00, 65.75, 64.51

SESTH1 = 1.00

RDIA1 = 51.70, 44.74, 36.38, 26.60, 15.62

RDEA1 = 56.35, 57.30, 58.26, 59.20, 60.13

RERTH1 = 1.00

Open setting:

 \triangle SD1A1, SDEA1 = -7.53°

Closed setting:

 \triangle SDIA1, SDEA1 = 7.13°

TWO-STAGE TURBINE FOR TASK III

Total Efficiency = 0.88

 P_T , in/ P_T , out = 3.438

Overal1

 P_T , in/ P_S , out = 4.018

Design Flow, 1st stage P/P, T_T , in, N, P_T , in, SECT, RG, PCNH are same as for single-stage turbine.

All Stage 1 input are same as for single-stage turbine.

Stage 2

GAMG2 = 1.4, 1.4, 1.4, 1.4, 1.4

DR2 = 22.000, 20.658, 20.658, 20.091, 20.091

DT2 = 30.000, 31.341, 31.341, 31.908, 31.908

RWG2 = 1.0, 1.0, 1.0, 1.0, 1.0,

SDIA2 = 20.07, 18.85, 17.77, 16.79, 15.92

SDEA2 = 66.05, 63.99, 62.00, 60.09, 58.24

SESTH2 = 1.00

RDIA2 = 49.34, 40.57, 30.16, 17.97, 5.82

RDEA2 = 48.88, 50.83, 52.70, 54.50, 56.18

RERTH2 = 1.00

Open Setting: △SDIA2, SDEA2 = -9.62°

Closed Setting: △SDIA2, SDEA2 = 8.81°

3.2.1 Loss Definition. - A parametric variation of loss definition parameters at design speed and design stator setting for the Task III single stage turbine was completed to produce 88.5% total-total efficiency at a total-total pressure ratio of 1.797. Shown in Figures 2 through 4 are the interaction of inlet recovery factor, stator efficiency, rotor efficiency and test factor to produce 88.5% total-total efficiency at design point total-total pressure ratio. Much lower revels of efficiency and/or test factor must be used when compared with the level required for the NASA Two Stage Turbine evaluated in Task II (see Reference 1). The efficiency characteristic with total pressure ratio along the 100% design speed line is shown in Figures 5 through 11 demonstrating the trade-off between stator and rotor efficiency and test factor for constant radial profiles, loss profiles and test factor profiles.

If constant radial profiles of stator efficiency \P_s , rotor efficiency \P_R , and test factor RTF, are utilized with a rotor recovery factor $\P_{RR} = 1.0$, to establish the design point condition, then Figure 2 may be used to select values of stator and rotor efficiency and test factor to produce 88.5% total-total efficiency at a total-total pressure ratio of 1.797 at the design point as shown in the following table:

RTF		95	1	.0
	<u>η_s</u>	$\frac{\eta_R}{.92}$	$\frac{\eta_S}{.98}$	$\frac{\gamma_{\rm R}}{.856}$
	.96	.938	.96	.870
	.94	.96	. 94	.886

The efficiency characteristic with total pressure ratio along the 100% design a speed line is shown in Figures 5 and 6. It can be seen that with high stator efficiency and low rotor efficiency the maximum efficiency was higher, occurs at a lowercopressure ratio, and the decrease in efficiency with pressure ratio was greater than with low stator efficiency and high rotor efficiency. It is also shown that with a high rotor test factor and low rotor efficiency that the maximum efficiency was higher and the decrease in efficiency with pressure ratio was greater than with a low rotor test factor and high rotor efficiency.

Two methods to produce radial variation in stagnation condition are presented as a loss profile method and a test factor profile method. In the loss profile

method, the radial variation in stator efficiency and rotor efficiency were selected as:

$$M_{\rm S}$$
 and $M_{\rm R}$ = 1-2x, 1-x, 1-x, 1-x, 1-2x

where 1-x in the three center sectors was selected the same as Figure 5 for comparison purposes. Shown in Figure 7 is the efficiency characteristic with total pressure ratio along the 100% design speed line. It is shown that the trade-off between stator and rotor efficiency was similar to Figure 5, however, the efficiency level was approximately 2% higher. Therefore lower values of stator efficiency and/or rotor efficiency must be used with the loss profile method to produce 88.5% total-total efficiency at the design point.

In the test factor profile method, the radial variation in rotor test factor was selected as:

$$TF = .875, 1.0, 1.0, 1.0, .875$$

to produce a sector height average test factor of .95 for comparison purposes. The results shown in Figure 8 are identical to Figure 5.

The constant radial profile, loss profile, and test factor profile methods are compared in Figures 9 through 11 along the 100% design speed line. It is shown that high stator efficiency with low rotor efficiency produces a higher maximum efficiency along the 100% speed line and the decrease in efficiency with pressure ratio was greater than with low stator efficiency and high rotor efficiency. With a high rotor test factor and low rotor efficiency, the maximum efficiency along the 100% speed line was higher and the decrease in efficiency with pressure ratio was greater than with a low rotor test factor and high rotor efficiency. With the loss profile method, the efficiency was approximately 2% higher, therefore lower values of stator efficiency and/or rotor efficiency must be used to produce the same efficiency. The test factor profile method produced overall results which were the same as the constant test factor method for the same average test factor. Discussion of the Task III selected geometrics with the NASA Project Manager and the NASA Research Advisor resulted in the following selected loss parameter input:

- a) TF = 1.0
- b) $\eta_S = .94, .97, .97, .97, .94$ c) $\eta_R = 1-2x, 1-x, 1-x, 1-x, 1-2x,$

where x was selected as .093 on stage one and .108 on stage two to match design data.

- 3.2.2 Optimum Incidence. The optimum incidence angle and off-design incidence angle relationship calculated for the NASA Lewis Research Center turbine in Task II were used in determining the performance maps. The optimum incidence angle was assumed to occur at -8° from the design condition and the inlet recovery factor for off-design incidence was assumed to vary as cos 3. for positive incidence angle and negative incidence angle.
- 3.3 Results. The results are presented as performance maps in the form of equivalent work versus equivalent weight-flow-speed parameter with contours of total pressure ratio, equivalent speed and efficiency. Equivalent weight-flow versus total pressure ratio as well as mean section incidence angle, rotor-hub Mach Number and rotor-hub reaction versus equivalent work are also presented.
- 3.3.1 Single Stage Turbine. Shown in Figures 12 through 29 are the performance maps and additional graphs showing rotor incidence angle, stage exit angle, rotor hub relative inlet Mach Number and hub reaction versus equivalent work in the speed range of 60% to 120% of design for three stator positions. The variation of significant parameters along the peak efficiency ridge is given in the three following tables for the three stator schedules.

SINGLE STAGE

SINGLE STAGE								
STATOR SCHEDULE 0.0								
%n/ √ o cr¹	<u>60</u>	<u>70</u>	<u>80</u>	. <u>90</u>	<u>100</u>	<u>110</u>	120	
w √ oci e/s	26.20	30.18	33.07	35.64	37.54	39.15	39.70	
wne/608	1154.6	1 5 51.5	1943.6	2356.7	2757.2	3163:7 7	3499.4	
∆h/ 9c r	4.27	6.10	7.94	10.14	12.43	15.32	17.09	
P_{To}/P_{T_2}	1.145	1.216	1.294	1.395	1.513	1.682	1.802	
η_{TT}	.901	.900	.899	.898	.895	.892	.886	
I_R	27	1.22	.31	34	-2.03	- 5. 4 5	-8.99	
R _{XR}	.106	.117	.136	.161	.194	.289	.288	
α_2	-7.03	-3.37	-2.37	31	1.28	5.01	4.21	
M _f	.158	.193	.225	.261	.299	.334	.381	
		STATOR S	CHEDULE -	7.53				
$N/\sqrt{\Theta_{\rm CR}}$	<u>60</u>	<u>70</u>	<u>80</u>	<u>90</u>	<u>100</u>	<u>110</u>	<u>120</u>	
w Ver e/s	37.38	40.085	42.33	44.22	44.79	45.06	44.96	
wn∈/60\$	1647.2	2060.7	2487.4	2923.9	3290.2	3641.1	3962.8	
∆h/ 9cr	6.29	7.94	9.76	11.95	13.37	14.77	15.59	
P_{To}/P_{T_2}	1.234	1.308	1.400	1.523	1.618	1.726	1.807	
$\eta_{ ext{ iny TT}}$.866	.863	.857	.848	.837	.822	.805	
$\tilde{\iota}_{ m R}$	-4.50	-8.70	≈ 7.53	- 17.51	-25.18	-33.62	-43.03	
R_{XR}	.357	.391	.431	.485	.526	.571	، 602	
$\alpha_{2}^{}$	26.35	24.68	23.82	24.41	22.45	20.98	18.11	
M _f ခ	.248	.283	.322	.371	.402	.436	.457	
		STATOR	SCHEDULE	7.13				
%N/ √0cr	<u>60</u>	70	80	<u>90</u>	100	110	120	
W Ver C/S	18/07	20.34	22.09	23 , 78	25.30	26.60	27.84	
WNC / 60\$	796.3	1045.7	1298.0	1572.2	1858.7	2149.2	2454.1	
∆h/θcr	3.41	4.56	5.66	6.97	8.48	10.18	12.52	
P_{To}/P_{T_2}	1,113	1.155	1.196	1.249	1.313	1.390	1.507	
$\mathbf{\eta}_{ ext{TT}}$.907	.908	.909	.910	.910	.910	.909	
I_R	14.07	13.18	10.82	9.43	8.50	7.69	8.61	
R_{XR}	117	111	101	093	086	 078	072	
α_2	-43.61	-43.94	- 45 . 41	- 45.85	-45. 77	- 45.42	- 43.43	

.140

.158

.177

.197

.224

.106

 $M_{\mathbf{f}}$

.124

The single stage turbine evaluated with: a.) stator at design point position; b.) stator at open position; and, c.) stator at closed position; had a peak turbine total-total efficiency of .901, .866, and .910 for the three maps respectively. At design speed, as the stator was opened to 130% design area the equivalent flow parameter increased to 119% design and as the stator was closed to 70% design area the equivalent flow parameter decreased to 67% design. As the the stator was opened, due to the restriction of the rotor area, the weight flow did not increase as fast as the stator area was increased; however, as the stator was closed it was the controlling restriction achd the weight flow decreased nearly proportional to the area schedule. At design schedule the stator pressure ratio was 1.330 at peak turbine efficiency; and as the stator was openedd the stator pressure ratio decreased to 1.240; and when closed, the stator pressure ratio was 1.30. Theorotor pressure ratio was 1.275, 1.535, and 1.090 for the three stator positions respectively. Of significant importance is the swing in rotor incidence angle and leaving exit angle with the stator position. As the stator was opened, the rotor incidence changed -23.15° and the leaving swirl changed +21.17°. As the stator was closed, the rotor incidence changed +10.53° and the leaving swirl changed -47.05°. For a net area change of 186% over minimum, the equivalent flow changed 177% over minimum, the rotor incidence angle changed 33,68° and the leaving angle changed 68.22°.

3.3.2 Two Stage Turbine. - Shown in Figures 30 through 119 are the performance maps and additional graphs showing rotor incidence angle, stator exit angle, turbine exit angle, rotor hub relative inlet Mach Number and hub reaction versus equivalent work in the speed range of 60% to 120% of design for three stator positions on each of the two stators. The variation of significant parameters along the peak efficiency ridge is given in the nine following tables for the nine stator schedules.

TWO STAGE

		STATOR SO	CHEDULE O	.0, 0.0			
%n/√ 0 c‡	<u>60</u>	<u>70</u>	<u>80</u>	<u>90</u>	100	110	<u>120</u>
W √Ocr C/S	33.56	34.02	36.66	38.30	39.34	39.70	39.70
WNC/60s	1478.9	1749.3	1254.5	2532.1	2890.1	3207.6	3499.4
∆h/θcr	10.73	11.68	15.73	20.01	25.14	29.80	35.58
P_{To}/P_{T_2}	1.443	1.485	1.718	2.016	2.465	3.005	4.169
$oldsymbol{\eta}_{ ext{TT}}$.867	.878	.882	.886	.889	.888	.878
I _{R,1}	15.39	9.51	8.51	6.14	2.80	-2.95	£10.99
RXR, 1	.091	.112	.143	.181	.224	.261	289
Is, ₂	11.91	3.12	4.19	3.87	3.25	06	25.60
I _R ,2	-5.11	-15.98	-12.05	-9.22	-5.38	-4.18	- 5.37
R_{XR} , 2	035	.005	.005	.016	.044	.106	.310
$\alpha_{2,2}$	-20,22	-29.88	-24.97	≃20.15	-12,46	-5.08	9.93
M _{f,2}	.168	.175	.217	. 264	.331	.411	.584
		STATOR SO	:НЕПІП.Е. - 7	53 0 0			
9/27 / 1/0-1							
$N/\sqrt{\theta_{cr}}$	<u>60</u>	<u>70</u>	<u>80</u>	<u>90</u>	<u>100</u>	<u>110</u>	120
W √ 9cr C/S	35.26	38.34	40.87	42.99	43.69	43.81	43.63
WNC/60S	1553.7	1971.2	2402.0	2842.6	3209.1	3539.7	3845.6
∆h/0cr	8.92	11.77	15.24	20.15	24.07	27.50	31.65
P_{TO}/P_{T_2}	1.352	1.498	1.706	2.067	2.437	2.850	3.556
$\eta_{ ext{TT}}$	_₹ 867	. 867	.865	.864	.860	.854	.839
Ir, ₁	-11.08	-14.77	-18.77	-22.94	-30.63	-39.86	-49.59
RXR,1	.351	.381	.417	.462	.496	.519	.534
Is, ₂	11.63	10.38	9.66	9,98	7.10	2.42	-3.96
Ir, ₂	-4.99	-4.93	-3.45	0.76	1.16	-0.30	-4.26
R_{XR} , 2	036	026	014	007م	.053	.126	.314
$\alpha_{2,2}$	-20.17	-18.96	-15.69	-7.68	-310	1.17	11.14
M _{f,2}	.167	.200	. 242	.308	.371	.441	.582

TWO STAGE

	<u>9</u>	TATOR SCH	EDULE 7.	13, 0.0			
%N/ √θcr	<u>60</u>	<u>70</u>	<u>80</u>	<u>90</u>	<u>100</u>	<u>110</u>	<u>120</u>
W V Ocr €/S	24.67	26.96	28.80	29.67	29.88	29.88	29.88
WNG/60S	1082.1	1386,0	1692.2	1961.5	2194.6	2414.0	2633.5
∆h/θcr	8.122	11.22	15.74	21.49	34.13	37.03	41.37
$P_{\mathrm{T}\delta}/P_{\mathrm{T}_2}$	1.346	1.514	1.804	2.271	3.929	4.388	5.415
η_{TT}	.800	.806	.815	.827	.847	.863	.868
Ir,1	29.91	29.77	30.47	30.35	30.72	28.32	25.42
R _{XR,1}	184	 175	- .163	143	- .078	- .059	042
Is,	-13.32	-12.41	-8.58	-4.7 2	5.26	-1.43	~8.97
Ir, ₂	-40.13	- 37.74	- 31.02	- 22 . 89	- .43	-4.86	~ 9.95
R _{XR,2}	.082	.079	.063	,050	.076	.139	.313
$\alpha_{2,2}$	-47.44	- 45.46	- 40.30	- 32.85	-3.17	-3.02	6554
$M_{f,2}$.116	.142	.179	.228	.391	.340	.570
	<u>:</u>	STATOR SCI	HEDULE O	.0, - 9.62			
%N/√ 0 cr	<u>60</u>	<u>70</u>	80	<u>90</u>	100	<u>110</u>	<u>120</u>
$W\sqrt{\theta cr} G/S$	33.56	36.66	38.75	40.31	40.70	40.59	40.41
WNG/60S	1478.9	1885.0	2277.0	2665.3	2989.7	3279.6	3561.9
∆h/0cr	9.22	12.73	16.70	22.59	27.68	29.56	30,98
P_{TO}/P_{T_2}	1.389	1.582	1.843	2.337	2.912	3.198	3.500
$oldsymbol{\eta_{ ext{TT}}}$.828	.832	.837	. 843	.845	.840	.827
$I_r,_1$	15.39	14.63	13,20	11.76	7.65	1.11	- 6.99
R _{XR,1}	.091	.124	.169	. 246	.317	.338	.351
RXR,1 Is,2	.091 2.29						.351 -4.94
RXR,1 Is,2 Ir,2			3.78	6.54	6.22	1.30	
Is, ₂ Ir, ₂	2.29	3.16	3.78	6.54 -32.08	6.22 -31.17	1.30 -36.96	-4.94
Is, ₂	2.29 -40.55	3.16 -38.83	3.78 -37.25	6.54 -32.08 .335	6.22 -31.17 .407	1.30 -36.96 .465	-4.94 -43.28

TWO STAGE

	<u>:</u>	STATOR SCI	HEDULE -7	7.53,-9.6	<u>2</u>		
%N/ √ 0 cr	<u>60</u>	<u>70</u>	<u>80</u>	<u>90</u>	100	<u>110</u>	120
W √ 9cr' €/S	40.08	42.33	44.79	45.33	45.43	45.22	44.85
WNG/60S	1766.2	2176.3	2632.2	2997.0	3337.3	3654.0	3953.1
∆H/θcr	10.53	13227	17.91	20.97	24.11	26.82	27.04
$P_{TO}^{}/P_{T2}^{}$	1.453	1.614	1.944	2 . 220	2.572	2.967	3.105
η_{TT}	.835	.834	.832	.827	.819	.807	.785
ír, ₁	-1.61	-6.06	-9.38	-16.57	-25.21	-35,09	-45 40
R _{XR} ,1	.373	.413	.479	.524	.565	.589	.591
Is,2	12.28	10.53	11.70	9.70	7.35	3.57	-2.94
Ir, ₂	-24.46	-26.95	-24 . 06	-26.60	-29.32	-33.78	-41.14
R _{XR} ,2	.238	.264	295ء	.341	.404	.490	.527
$\alpha_{2,2}$	-4.33	-5.24	1.26	2.23	4 . 84	8.13	5.31
Mf, ₂	.203	, 238	.303	.352	.414	.488	.513
	,	emamon cor	IEDII 7	12 0 4	,		
.,—	<u>3</u>	STATOR SCH	IEDULE /.	13, -9.6.	<u>2</u>		
%N/ Vecr	<u>60</u>	<u>70</u>	<u>80</u>	<u>90</u>	<u>100</u>	<u>110</u>	<u>120</u>
W √ecr 6/S	25.86	28.11	29.48	29.88	29.88	29.88	29.88
WNE/60s	1139,6	1445.5	1732.3 3	1975.5	2194.9	2414.3	2633.9
∆h/θcr	8.32	11.79	16.48	31.81	37.77	37.58	38.89
P_{To}/P_{T2}	1,390	1.603	1.953	3 , 939	5.175	4.984	5.343
$\eta_{ ext{TT}}$.745 β	.751	.761	.789	.810	.820	.822
Ir, ₁	31.61	31.75	32.04	33.23	31.34	29.06	26.33
R _{XR} ,1	192	181	163	013	.034	.026	.023
Is, ₂	-15.34	-12.93	-9.02	10.46	7.52	.34	-7.82
Ir, ₂	-59.42	-57.01	-52.90	-25.46	-28.83	-38.08	-46.31
R _{XR} ,2	.317	.320	.324	.377	٠557	.532	.590
$\alpha_{2,2}$	-42.41	-39.01	-33,12	6.69	17.78	8.34	7.61
Mf,2	.125	.156	.197	.398	.561	.521	.571

TWO STAGE

	<u>s</u>	TATOR SCH	EDULE 0.	0, 8.81			
%N/ Ver	<u>60</u>	<u>70</u>	<u>80</u>	<u>90</u>	<u>100</u>	<u>110</u>	120
W √9cr 6/S	26.20	29.12	31.73	33.32	34.46	34.79	34.79
WNG/60S	1154.6	1497.2	1864.7	2203.1	2531.3	2811.4	3067.1
∆h/θcr	7.23	9.81	13.13	16.20	19.74	22.13	23.84
P_{To}/P_{T_2}	1.265	1.382	1.554	1.743	2.009	2.235	2.443
$\eta_{ ext{TT}}$.895	.894	.891	.886	.878	.866	.850
Ir, ₁	-2.27	- 4.47	-6.53	-11.49	- 17.75	- 27.84	- 39.80
R _{XR,1}	.106	.122	.140	.163	.188	.214	.239
Is, ₂	-8.02	-9.21	-9.73	-13.13	-17.11	-23.97	-31.41
Ir, ₂	12.65	14.06	16.94	18.01	19.94	19.49	18.18
R XR,2	249	252	261	261	261	249	. .233
$\alpha_{2,2}$	-46.54	-45. 02	- 41.81	-39.90	-36.41	-35.64	- 35.78
Mf, ₂	.117	.142	.173	.203	.241	.271	.299
	<u>s</u>	TATOR SCH	IEDULE -7	153, 8.81	<u>.</u>		
%N∕ √θcr	<u>60</u>	<u>70</u>	<u>80</u>	<u>90</u>	<u>100</u>	<u>110</u>	<u>120</u>
W √ Ocr G/S	28.26	34.08	34.08	36.04	36.67	37.38	37.18
WNG/60S	1245.1	1752.2	2002.6	2382.5	2694.7	3020.3	3277.5
∆h/θcr	6.85	11.96	12.25	15.66	17.63	22.40	23.10
P_{To}/P_{T2}	1.261	1.528	1.540	1.764	1.926	2.394	2.514
$\eta_{ ext{TT}}$.858	.848	.848	.840	.830	.815	.801
Ir, ₁	-32.67	-26.90	- 40.19	-45.52	- 54.26	-61.41	-69.97
R _{XR} ,1	.357	.373	.396	.417	.436	.452	.463
Is, 2	-2.16	6.19	- 5.26	-8.00	-14.87	-20.39	- 28.95
Ir, ₂	18.17	27.08	21.18	23.21	22.10	25.67	23.11
R _{XR,2}	274	311	281	284	271	268	- .247
$\alpha_{2,2}$	-41.65	-27.75	-36.88	-32.87	- 33.47	-24.48	-27.72
Mf, ₂	.126	.180	.184	.222	.248	.312	.330

TWO STAGE

CULVALO	SCHEDULE	7 12	0 01
STATUR	SCHEDULE	/.13.	0.01

%N/ √9cr	<u>60</u>	<u>70</u>	<u>80</u>	90	100	110	<u>120</u>
W √ecr' 6/S	22.39	24.67	26.63	28.01	28.74	29.15	29.19
WNG/60S	986.6	1268.4	1564.7	1851.8	2110.0	2355.6	2573.0
∆h/θcr	7.58	10.31	13.86	18.07	22.08	27.15	29.51
P_{TO}/P_{T2}	1.294	1.423	1.617	1.889	2.200	2.704	2.995
η_{TT}	.859	.863	.868	.874	.879	.882	.881
Ir,	25.78	25.18	24.88	24.24	22.45	20.05	14.93
R _{XR,1}	165	157	148	137	121	103	081
Is,	-19.30	-19.95	-19.43	-19,51	-22.32	-25.77	-33.17
Ir,	-1.14	0.78	5.09	9.78	12.47	17.18	16.08
R _{XR} ,2	187	192	206	221	226	233	216
α2,2	-54.17	-53.04	-50.47	-46.97	-44.07	-37.95	-37.52
Mf, ₂	.103	، 125	.152	,185	.219	.270	.301

The two stage turbine evaluated with both stators set at a.) design position; b.) open position; and c.) closed position; for a total of nine schedules had a range of peak turbine total-total efficiency as shown in the following table:

$\underline{\underline{m{\eta}_{ ext{TT}}}}$			
	S2 @ design	S2 @ open	S2 @ closed
S1 @ design	889	.845	.895
S1 @ open	.867	.835	.858
		1	

.868

S1 @ closed

W VACT 6/S

The peak turbine total-total efficiency occurred at different corrected speeds with stator schedule. The first stage stator schedule was the primary influence on the corrected speed at which peak efficiency occurred. When the first stage stator was open, peak efficiency occurred at the low corrected speed end and when the first stage stator was closed, peak efficiency occurred at the high corrected speed end. Closing the second stage stator moved peak efficiency to lower corrected speeds, however not as effective as the first stage stator.

.822

.882

At maximum efficiency on the 100% design speed line, the equivalent flow parameter was influenced by the stator schedule as shown in the following table:

	S2 @ design	S2 @ open	S2 @ closed
S1 @ design	39.34	40.70	34,46
S1 @ open	43.69	45.43	36.67
S1 @ closed	29.88	29.88	28.74

At design speed with the second stage stator at design position, as the first stator was opened to 130% design area the equivalent flow parameter increased to 111% design and as the 1st stator was closed to 70% design area the equivalent flow parameter decreased to 76% design. With the first stage stator at design position, as the second stator was opened to 130% design area the equivalent flow parameter in

increased to 1.03% design and as the 2nd stator was closed to 70% design area the equivalent flow parameter decreased to 87% design. With both stators open to 130% design area, the equivalent flow parameter only increased to 115% design; however, with both stators closed to 70% design area, the equivalent flow parameter decreased to 73% design. Due to the restriction of the rotor areas, as the stators were opened the weight flow did not increase as fast as the stator area was increased. As the stators were closed the 1st stage stator was the primary controlling restriction and the weight flow decreased nearly proportional to the area schedule. The second stage stator was approximately half as effective.

Of significant importance is the swing in blade row incidence angle with stator schedule. The first rotor incidence angle was primarily a function of the first stator position. With stator 1 open the first rotor incidence was negative with a minimum value of -55.26° when the stator 2 was closed. With stator 1 closed the 1st rotor incidence was positive with a maximum value of 31.34 when the stator 2 was open. The second stator incidence angle was primarily a function of its own position. With stator 2 open the second stator incidence was positive with a maximum value of 7.52° when the stator 1 was closed. With stator 2 closed the second stator incidence was negative with a minimum value of -22.32° when stator 1 was The second rotor incidence angle was primarily a function of the second stator position. With stator 2 open the second rotor incidence was negative with a minimum value of -31.17° when the stator 1 was design. With stator 2 doosed the second rotor incidence was positive with a maximum value of 22.10° when the stator 1 was open. The lewving swirl at design speed maximum efficiency was primarily a function of the second stator position. With stator 2 open the leaving swirl was positive with a maximum value of 17,78° when the first stator was closed. With stator 2 closed, the leaving swirl was negative with a minimum malue of -44.07° when the first stator was closed. For a net area change of 186% over minimum for both stators, the first rotor incidence angle changed 86.60°, the second stator incidence angle changed 29.84°, the second rotor incidence angle changed 53.27° and the leaving swirl angle changed 61.85°.

4.0 REFERENCES

\$67 B XC23

Flagg, E. E. "Analytical Procedure and Computer Program for Determining Performance of Axial Flow Turbines".

SYMBOL LIST

```
total enthalpy, (Btu/lb.)
h
            incidence angle (°)
Ι
           Mach Number
М
            axial Mach Number
Mf
N
           rotational speed (rpm)
Ρ
           pressure (psi)
Rx
            reaction
TF
            test factor
W
           weight flow (1b/sec)
N/\sqrt{\theta cr}
            equivalent speed parameter
W \sqrt{\theta cr} e/ equivalent weight-flow parameter
WNE/60$
            equivalent weight flow-speed parameter
∆h/θcr
            equivalent work parameter
            gas flow angle (°)
\alpha
            ratio of total pressure to standard pressure
            function of ratio of specific heats
θ
            ratio of total temperature to standard temperature
\eta
            efficiency
SUBSCRIPTS
cr
            critical
R
            rotor
R
            root
RR
            rotor recovery
RT
            root
S
            stator
            total
TT
            total-total
0, 1, 1A, 2, 2A
               station designation
1,2
               stage number
```

14 Stage 2 -0 2A 7 Stage 1 1 1A 0 32 31 30 Diameter 2 29 22 (.ni) 72 24 23 25

Figure 1. NASA - TASK III Turbine Flowpath

Figure 2

NASA - TASK III

Single Stage Parametric

RTF vs. η_{R} & η_{S}

 $\eta_{\rm TT}$ = .885 at Design Point

η_{RR} = 1.00

Figure 3

Single Stage Parametric

RTF vs.
$$\eta_R$$
 & η_S
 η_{TT} = .885 at Design Point

 η_{RR} = .95

Single Stage Parametric

RTF vs.
$$\eta_R & \eta_S$$
 $\eta_{TT} = .885$ at Design Point

 $\eta_{RR} = .90$

NASA - TASK III Single Stage Parametric Efficiency vs. Pressure Ratio RTF = .95 -94-•93-•92 -91-•90 $\eta_{\mathtt{TT}}$ -89-•88± .87_ M S η_{R} RTF = .95 **.98** .96 .92 .86_ **•**938 .94 **.**96 ·85+ 1.0 2.4 1.6 2.0 2.2 1.2 1.8 1.4 PT_0/PT_2

Figure 5

NASA - TASK III

Single Stage Parametric

Efficiency vs. Pressure Ratio

RTF = 1.0

Figure 7 NASA - TASK III Single Stage Parametric Efficiency vs. Pressure Ratio LOSS PROFILE -94-•93_ •92-•91 •90- $\eta_{ ext{TT}}$ -89--88-.87 LOSS PROFILE $\eta_{\rm S}$ ${\mathcal M}_{\mathbb R}$ •92 •938 98. 96 .86-• 94 -85

1.8

 PT_0/PT_2

1.6

1.0

1.2

1.4

2.0

2.2

2.4

Figure 8

NASA - TASK III

Single Stage Parametric

Efficiency vs. Pressure Ratio

RTF PROFILE

Single Stage Parametric

Efficiency vs. Pressure Ratio

METHOD COMPARISON

ms = .98

Single Stage Parametric

Efficiency vs. Pressure Ratio

METHOD COMPARISON

Single Stage Parametric

Efficiency vs. Pressure Ratio

METHOD COMPARISON

Figure 12

NASA - TASK III

Single Stage - Schedule 0.0

Performance Map

Figure 13 NASA - TASK III

Single-Stage Schedule 0.0

Equivalent Flow vs. Pressure Hatio

Figure 14

Single Stage - Schedule 0.0

Rotor Incidence vs. Equivalent Work

Figure 15

Single Stage - Schedule 0.0

Exit Angle vs. Equivalent Work

Figure 16

NASA - TASK III

Single Stage - Schedule 0.0

Hub Mach Number vs.
Equivalent Work

Figure 17

Single Stage - Schedule 0.0

Hub Reaction vs.
Equivalent Work

Figure 18

NASA - TASK III

Single Stage - Schedule -7.53

Performance Map

WN€/608 - Equivalent Veight Flow - Speed Parameter

Figure 19

Single Stage - Schedule -7.53

Equivalent Flow vs. Pressure Ratio

Figure 20

NASA - TASK III

Single Stage - Schedule -7.53

Rotor Incidence vs. Equivalent Work

Figure 21

Single Stage - Schedule -7.53

Exit Angle vs. Equivalent Vork

Figure 22

MASA - TASK III

Sincle Stace - Schedule -7.53

Hub Mach Number

Figure 23

Single Stage - Schedule -7.53

Hub Reaction

vs. Equivalent Work

Figure 2h

NASA - TASK TII

Single Stage - Schedule 7.13

Performance Map

WN6/60 & - Equivalent Weight Flow - Speed rarameter

Figure 25

Single Stage - Schedule 7.13

Equivalent Flow vs. Pressure Ratio

Figure 26

Single Stage - Schedule 7.13

Rotor Incidence vs. Equivalent ork

Figure 27

Sincle Store - Schedule 7.13

Exit Angle vs. Equivalent Work

Figure 29

MASA - TACK III

Single Stage - Schedule 7.13

Hub Reaction vs.
Equivalent Vork

Figure 30

NASA - TASK III

Two Stage-Schedule 0.0, 0.0

Performance Men

Figure 31

NASA - TASK III

Two Stage-Schedule 0.0, 0.0

Rotor 1 Incidence vs. Equivalent Work

Figure 33 NASA - TASK III Two Stage-schedule 0.0, 0.0 Stator 2 Incidence vs. Equivalent Work 40 -60% 30 70% 80% 20 90% 10 --100% 110% 1_{S2} - Stator 2 Incidence 0 -120% **-**30 -40 **-**50 · -60 4 8 12 16 20 24 28 36 32 △h/Ocr - Equivalent Work

Figure 34 NASA - TASK III Two Stage-Schedule 0.0, 0.0 30 Rotor 2 Incidence vs. Equivalent Work60% - 70% 80% 20 90% 10 100% _110% 0 120% -10 - Rotor 2 Incidence **-**20 **-**30 ${
m I}_{
m R2}$ 40 -50 **-**60 -70

16

12

8

20

△h/0cr - Eruivalent Work

24

28

32

36

-80

Figure 36

NASA - TASK III

Two Stage-Schedule 0.0, 0.0

Rotor Hub Mach Number
vs.
Equivalent Work

Figure 37 NASA - TASK III

Two Stage-Schedule 0.0, 0.0

Rotor 2 Hub Mach Number vs. Equivalent Work

NASA - TASK III

Two Stage-Schedule 0.0, 0.0

Two.Stage-Schedule 0.0, 0.0

Stage 2 Hub Reaction vs. Equivalent Work

Figure 40

NASA - TASK III

Two Stage - Schedule -7.53, 0.0

Performance Map

Figure 41
NASA - TASK III

Two Stage-Schedule -7.53, 0.0

Equivalent Flow vs. Pressure Ratio

Figure 42 NASA - TASK III

Two Stage-Schedule -7.53, 0.0

Rotor 1 Incidence vs. Equivalent Work

Figure 43 NASA - TASK III

Two Stage-Schedule -7.53, 0.0

Stator 2 Incidence vs. Equivalent Work

Figure 44

Two Stage-Schedule -7.53, 0.0

NASA - TASK III Two Stage-Schedule -7.53, 0.0 40 -Exit Angle vs. Equivalent Work 60% 70% 80% 30 – 90% 100% 20 110%)120% 10 -0 - α_2 - Exit Angle **-**10 **-2**0 **-**30 --40 **-**50 -**-**60 + **-**70 16 36 32 8 20 24 12 28

Ah/Arr _

Panizalent Wark

Figure 45

Figure 46 NASA - TASK III

Two Stage-Schedule -7.53, 0.0

Rotor 1 Hub Mach Number vs.
Equivalent Work

Rotor 2 Hub Mach Number vs. Equivalent Work

NASA - TASK III

Figure 49 NASA - TASK III

Two Stage-Schedule -7.53, 0.0

Stage 2 Hub Reaction vs. Equivalent Work

NASA - TASK III

Figure 51 NASA - TASK III

Two Stage Schedule 7.13, 0.0

Equivalent Flow vs. Pressure Ratio

NASA - TASK III

Two Stage-Schedule 7.13, 0.0

Rotor 1 Incidence vs. Equivalent Work

NASA - TASK III

Two Stage-Schedule 7.13, 0.0

1.10 Rotor 1 Hub Mach Number vs. Equivalent Work

Figure 57

NASA - TASK III

Two Stage-Schedule 7.13, 0.0

Rotor 2 Hub Mach Number vs. Equivalent Work

Figure 58

NASA - TASK III

Two Stage-Schedule 7.13, 0.0

Stage 1 Hub Reaction vs. Equivalent Work

Figure 59

NASA - TASK III

Two Stage Schedule 7.13, 0.0

Stage 2 Hub Reaction vs. Equivalent Work

Figure 60

NASA - TASK III

Two Stage-Schedule 0.0, -9.62

Performance Map

Figure 61

NASA - TASK III

Two Stage-Schedule 0.0, -9.62

Equivalent Flow vs. Pressure Ratio

NASA - TASK III

Two Stage-Schedule 0.0, -9,62

Rotor 1 Incidence vs. Equivalent Work

Figure 63 NASA - TASK III 30-Two Stage-Schedule 0.0, -9.62 Stator 2 Incidence vs. Equivalent Work 20-10-80g 90% 200% \circ 120% -10- I_{S_2} - Stator2Incidence **-2**0-**-**30 -110 **-**50-**-**60-**-**70-**-**°°0 + 4 0 12 16 20 24 28 32 36 △h/9cr - Equivalent Work

Figure 66

NASA - TASK III

Two Stage-Schedule 0.0, -9.62

Rotor 1 Hub Mach Number vs. Equivalent Work

Figure 67 NASA - TASK III .567 Two Stage-Schedule 0.0, -9.62 60% Rotor Hub Mach Number vs. Equivalent Work **-**52 70% 48_ 80% 90% -111-100% -40-110% $\rm M_{IA}{
m -RT}$ - Rotor 2 Hub Mach Number 120% •36 **-**32 --28 -24 •20 •16 .12 0 4 8 12 16 211 20 28 32 36 △h/0cr - Equivalent Work

Two Stage-Schedule 0.0, -9.62

Stage 1 Hub Reaction vs. Equivalent Work

Figure 69

NASA - TASK III

Two Stage-Schedule 0.0, -9.62

Stage 2 Hub Reaction vs. Equivalent Work

NASA - TASK III

Two Stage-Schedule -7.53, -9.62

Performance Map

WN€/605- Equivalent Weight Flow - Speed Parameter

Figure 71

NASA - TASK III

Two Stage-Schedule -7.53, -9.62

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

Pressure Ratio - PT₀/PT₂

30

1.0 1.2

Figure 72 NASA - TASK III

Two Stage-Schedule -7.53, -9.62
Rotor 1 Incidence vs. Equivalent Work

-70 + 0

4

8

12

16

 \triangle h/Ocr - Equivalent Work

20

24

28

32

Figure 74 NASA - TASK III

Two Stage-Schedule -7.53, -9.62

Rotor 2 Incidence vs. Equivalent Work

Figure 75 NASA - TASK III 40-Two Stage-Schedule -7.53, -9.62 Exit Angle vs.
Equivalent Work 30 20 10 8 00% 7 -10 -20 -30 -40 **-**50 -60 -70 8 12 20 24 28 7 32 4 16 0 $\Delta h/\Theta cr$ - Equivalent Work

Figure 76

Two Stage-Schedule -7.53, -9.62

Rotor 1 Hub Mach Number vs.
Equivalent Work

Figure 77 NASA - TASK III Rotor 2 Hub Mach Number vs. Equivalent Work .56 60% Two Stage-Schedule -7.53, -9.62 .52 70% 80% -48 90% -44 100% $M_{
m IA}-RT$ - Rotor 2 Hub Mach Number -40 110% 120% **.**36 •32 .28 .24 .20 .16 **2**8 32 24 16 4 8 12 20 Ō

△h/9cr - Equivalent Work

NASA - TASK III

Two Stage-Schedule -7.53, -9.62

Stage 1 Hub Reaction vs. Equivalent Work

Figure 78

NASA - TASK III

Two Stage-Schedule -7.53, -9.62

Stage 2 $^{\rm H}{\rm ub}$ Reaction vs. Equivalent Work

Figure 80

Figure 81

NASA - TASK III

Two Stage-Schedule 7.13, -9.62

Equivalent Flow vs. Pressure Ratio

Figure 82 NASA - TASK III

Two Stage-Schedule 7.13, -9.62

Rotor 1 Incidence vs. Equivalent Work

NASA - TASK III

Rotor 2 Incidence vs. Equivalent Work

Two Stage-Schedule 7.13, -9.62

△h/9cr - Equivalent Work

Figure 88

NASA - TASK III

Two Stage-Schedule 7.13, -9.62

Stage 1 Hub Reaction vs. Equivalent Work

Two Stage-Schedule 7113, -9,62

Stage 2 Hub Reaction vs. Equivalent Work

NASA - TASK III

Two Stage Schedule 0.0, 8.81

Performance Map

WN6/608 - Equivalent Weight Flow - Speed Parameter

Figure 91

Two Stage-Schedule 0.0, 8.81

Equivalent Flow vs. Pressure Ratio

Two Stage-Schedule 0.0, 8.81

Rotor 1 Incidence vs. Equivalent Work

Figure 93 NASA - TASK III Two Stage-Schedule 0.0, 8.81 Stator 2 Incidence vs. Equivalent Work 30 60% 20_ 70% 10_ 80% 0 90% -10 100% -20 110% 120% -30 --40 -**-**50 _ **-**60 -70 -70 4 8 12 16 20 24 28 36 32 △h/⊖cr - Equivalent Work

Figure 96

NASA - TASK III

Two Stage-Schedule 0.0, 8.81

Rotor 1 Hub Mach Number vs. Equilarent Work

Figure 97 NASA - TASK III 1.30 Two Stage-Schedule 0.0, 8.81 60% Rotor 2 Hub Mach Number 70% Equivalent Work 1.20_ 80% 90% 1.10 100% 110% 1.00 120% •90_ •80 .70_ -60 .50 -40 •30_ 16 24 36 12 20 28 4 32 △h/Ocr - Equivalent Work

Figure 98

Two Stage Schedule 0.0, 8.81

Stage 1 Hub Reaction vs. Equivalent Work

Two Stage-Schedule 0.0, 8.81

Stage 2 Hub Reaction vs. Equivalent Work

Figure 100

NASA - TASK III

Two Stage-Schedule -7.53, 8.81

Performance Map

Figure 101

Two Stage-Schedule -7.53, 8.81

Equivalent Flow vs. Pressure Ratio

Figure 102 NASA - TASK III

Two Stage-Schedule -7.53, 8.81
Rotor 1 Incidence vs. Equivalent Work

NASA - TASK III

Two Stage-Schedule -7.53, 8.81

Stator 2 Incidence vs. Equivalent Work

Figure 104

Two Stage-Schedule -7.53, 8.81

Rotor 2 Incidence vs. Equivalent Work

Figure 105 NASA - TASK III Two Stage-Schedule -7.53, 8.81 Exit Angle vs. Equivalent Work 40 , 30 20 10 0 -10 α_2 - Exit Angle 60% -30 70% -4d 80% 90% 100% 110% 120% 1 36 28 32 24 16 8 12 20 △h/9cr - Equivalent Work

NASA - TASK III

Two Stage-Schedule -7.53, 8.81

Rotor 1 Hub Mach Number vs. Equivalent Work

Figure 107

Figure 108

Two Stage-Schedule -7.53, 8.81

NASA - TASK III

Stage 1 Hub Reaction vs. Equivalent Work

NASA - TASK III

Two Stage-Schedule -7.53, 8.81

Stage 2 Hub Reaction vs. Equivalent Work

Figure 110 NASA - TA**S**K III

Figure 111

Two Stage-Schedule 7.13, 8.81

Equivalent Flow vs. Pressure Ratio

NASA - TASK III

Two Stage-Schedule 7.13, 8.81

Rotor 1 Incidence vs. Fquivalent Work

Figure 113

NASA - TASK III

Two Stage-Schedule 7.13, 8.81

NASA - TASK III

NASA - TASK III

Two Stage-Schedule 7.13, 8.91

Rotor 1 Hub Mach Number vs. Equivalent Work

NASA - TASK III

Two Stage-Schedule 7.13, 8.81

Stage 1 Hub Reaction vs. Equivalent Work

Figure 119

Two Stage-Schedule 7.13, 8.81

Stage 2 Hub Reaction vs. Equivalent Work

 \triangle h/ θ cr - Equivalent Work